

ELECTROLYTE ANALYZER

EAGLENOS Co., Ltd.

Electrolyte Analyzer

- ◆ Maintenance-free: No fluid pipe inside the device, no reagent pack required
- ◆ **Easy to use:** Convenient bedside testing with whole blood
- ◆ Fast, Lab-quality results: Provides accurate results in approximately 5 minutes, auto-calibration before each test
- ◆ **Portable:**Size: 240 × 120 × 110 mm

 Weight: 1.5 ± 0.2 kg (including battery)
- ◆ Including ionized magnesium (iMg²+): Used for hypomagnesemia and hypermagnesemia monitoring

Electrolyte Cartridge

- ◆ **"5 in 1" cartridge:** Concurrently tests 5 parameters: K⁺, Na⁺, Cl⁻, iCa²⁺ and iMg²⁺, addressing more comprehensive clinical needs
- ◆ **No risk of sample contamination:** Dry chemistry method, single-use cartridge eliminates the risk of contamination

Parameters

Potassium (K+): Even small changes in extracellular K+ concentration will have significant effects on the transmembrane potential gradient, and thereby the function of neuromuscular and cardiac tissues. [1]

Sodium (Na+): As the most abundant extracellular fluid solute, Na+ is the major determinant of its osmolality and thereby the principal determinant of water distribution between the intracellular and extracellular compartments. ^[2] This highlights the role of Na+ in the maintenance of blood volume and thereby blood pressure.

Chloride (Cl⁻): As the second most abundant extracellular fluid ion after Na⁺, and the most abundant extracellular fluid anion, Cl⁻ is essential for the maintenance of normal plasma osmolarity.^[3]

lonized Calcium (iCa²⁺): The maintenance of iCa²⁺ within normal limits is not only important for the structural integrity of bones but for a range of physiological functions, including: hemostasis, cardiac and skeletal muscle cell contraction, neuromuscular transmission and action of many hormones (calcium-signaling).^[4]

lonized magnesium (iMg²⁺): iMg^{2+} relates to the stabilization of intracellular potassium, which ensures the normal functionality of myocardium, nerve and muscle.

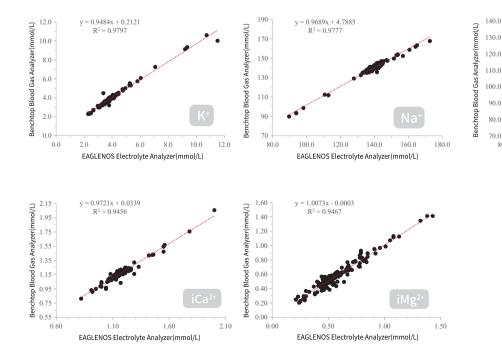
Performance

Parameter	Accuracy	Precision	Stability	Test Range(mmol/L)
K ⁺	±3.0%	≤1.5%	≤2.0%	1.0-15.0
Na ⁺	±3.0%	≤1.5%	≤2.0%	100-200
Cl-	±3.0%	≤1.5%	≤2.0%	65-160
iCa ²⁺	±5.0% or ±0.05 mmol/L	≤1.5%	≤3.0%	0.25-4.00
iMg ²⁺	\pm 5.0% or \pm 0.05 mmol/L	≤3.0%	≤3.0%	0.2-1.5

*Study conducted in 2020. Data on file, Eaglenos Co., Ltd.

y = 0.9251x + 7.8213 $R^2 = 0.956$

EAGLENOS Electrolyte Analyzer(mmol/L)


160.00

90.0

Accuracy Comparison

The accuracy of Eaglenos Electrolyte Analyzer has been validated by comparing with the wet chemistry blood gas biochemical analyzer (using 136 sets of samples). The linear regression analysis shows a strong positive, linear relationship between the results of the two analyzers (R² > 0.94 for all parameters), demonstrating the accuracy of our analyzer for testing K+, Na+, Cl-, iCa²⁺ and iMg²⁺ concentration.

Correlation with Benchtop Blood Gas Analyzer

Applications

Emergency Department

Monitoring of electrolytes in critically ill patients with poisoning, coma and convulsions

ICH

Monitoring of electrolytes in critically ill patients

Surgery

Monitoring of electrolytes during operation

Anesthesiology Department

Monitoring of electrolytes during surgical anesthesia (preoperative, intraoperative and postoperative)

Dermatology Department

Monitoring of electrolytes in patients with severe trauma, burn and scald

Gastroenterology Department

Monitoring of electrolytes in patients with diarrhea and vomiting accompanied by

Nephrology Department

Monitoring of electrolytes for patients in dialysis ward

Primary Medical Institution

Electrolytes test

How to Use

Step 1: Scan the barcode on the cartridge pouch and take out the cartridge from its pouch

Step 2: Fill the inlet with sample to the fill mark and slide the cap to seal the inlet

Step 3: Insert the cartridge into the analyzer until it clicks. Wait for the results

For in vitro diagnosis only.

If you need to know the intended use of the product, precautions and contraindications, please refer to the instructions. This material is intended for academic exchange and training of professionals only.

Nanjing Eaglenos Co., Ltd.

Tel: +86-025-400-019-0069

Address: B2-2, Treehouse Headquarters Cluster, No.73 Tanmi Road

Jiangbei New Area, Nanjing, Jiangsu 210032, China

Website: www.eaglenos.com

References

[1] Zull DN. Disorders of potassium metabolism. Emerg Med Clin North Am 1989, 7, 4: 771-94

[2] Wennecke G. Useful tips to avoid preanalytical errors in blood gas testing; electrolytes, www.acutecaretesting.org Oct 2003

[3]Berend K, Hulsteijn L, Gans R. Chloride: the queen of electrolytes. Eur J Intern Med 2012; 23: 203-11

[4] Ramasamy I. Recent advances in physiological calcium homeostasis. Clin Chem Lab Med 2006: 44: 237-73

